Math 261

Fall 2023
Lecture 3

Feb 19-8:47 AM

Class QE $2(x-h)^{2}+(y-k)^{2}-r^{2}$ \& Circle
Graph $x^{2}+(y+2)^{2}=4^{0} \quad$ Domain $[-2,2] \checkmark$ Give domain E range in interval notation. Center $(0,-2) \checkmark$
Radius $2 \checkmark$

$$
\begin{aligned}
& \rightarrow y=|x| \\
& \begin{array}{c|cc|c}
x & y & x & y \\
\hline 0 & 0 & & -1 \\
\hline
\end{array} \\
& y= \begin{cases}-x & \text { if } x<0 \\
x & \text { if } x \geq 0\end{cases}
\end{aligned}
$$

Aug 30-10:29 AM

$$
\begin{aligned}
& y=|\underline{x-2}| \\
& x-2=0 \\
& x=2 \\
& \text { shift Right } 2 \text { units }
\end{aligned}
$$

$$
y=x^{2}-2 x
$$

Replace x with $x+h$, Simplify, then
Subtract the original y from it.

$$
\begin{aligned}
& (x+h)^{2}-2(x+h)-\left(x^{2}-2 x\right) \\
= & \underbrace{(x+h)(x+h)}-2 x-2 h-x^{2}+2 x \\
= & x^{2}+x h+h x+h^{2}-2 x-2 h-x^{2}+2 x \\
= & 2 x h+h^{2}-2 h
\end{aligned}
$$

Divide by h, simplify, then evaluate for $h=0$.

$$
\frac{2 x h+h^{2}-2 h}{h}=\frac{h(2 x+h-2)}{K}=2 x+h^{0}-2
$$

take the answer, set it equal to $0, \begin{aligned} & =2 x+0-2\end{aligned}$
Solve for x, then find the y corresponding to that x.

$$
\begin{aligned}
& 2 x-2=0 \\
& x=1 \\
& y=1^{2}-2(1) \\
& y=-1
\end{aligned}
$$

Aug 30-10:36 AM

Graph $y=\sqrt{x+4}$
from Yesterday $\rightarrow y=\sqrt{x}$

$$
\begin{aligned}
& \int_{x+4=0} \quad x-\text { Int } \\
& x=-4
\end{aligned}
$$

shift left 4 units.

$$
x=0
$$

$$
y=\sqrt{0+4}=\sqrt{4}=2
$$

shift the graph of $y=\sqrt{x+4} \quad 2$ units down.

Distance formula between two Points:

$$
\begin{array}{ll}
p_{1}\left(x_{1}, y_{1}\right)+c \\
c^{2}=a^{2}+b^{2} \\
d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}
\end{array}
$$

Aug 30-10:57 AM
find the distance between $(-2,3)$ and $(6,11)$

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
&=\sqrt{(6-(-2))^{2}+(11-3)^{2}}=\sqrt{8^{2}+8^{2}}
\end{aligned}=\sqrt{128} .
$$

Sind an equation that all points are 4 units from a fixed Point $(3,-2)$.

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& 4=\sqrt{(x-3)^{2}+(y--2)^{2}} \\
& 4=\sqrt{(x-3)^{2}+(y+2)^{2}}
\end{aligned}
$$

Square both Sides

More from algebra
Rationalize the denominator: $\frac{4}{\sqrt{6}-\sqrt{2}}$

$$
\begin{aligned}
\frac{4}{\sqrt{6}-\sqrt{2}} & \frac{4}{5^{0}} \underbrace{\text { conjugates }}_{\rightarrow 6-\sqrt{2}} \cdot \frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}} \\
& =\frac{4(\sqrt{6}+\sqrt{2})}{\sqrt{36}+\sqrt{12}-\sqrt{12}-\sqrt{4}} \\
= & \frac{4(\sqrt{6}+\sqrt{2})}{4}=\sqrt{6}+\sqrt{2}
\end{aligned}
$$

Rationalize the numerator

$$
\begin{aligned}
& \frac{\sqrt{x+h}-\sqrt{x}}{h}=\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
&(A-B)(A+B) \\
&=A^{2}-B^{2}=\frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
&=\frac{x+h-x}{K(\sqrt{x+h}+\sqrt{x})}
\end{aligned}
$$

Let $h=0$, and $x=4$,

$$
\begin{aligned}
& \text { evaluate } \longrightarrow=\frac{1}{\sqrt{x+h}+\sqrt{x}} \\
& \frac{1}{\sqrt{4+0}+\sqrt{4}}=\frac{1}{2+2}=\frac{1}{4}
\end{aligned}
$$

Aug 30-11:19 AM

$$
\begin{aligned}
& \text { Simplify } \begin{array}{l}
\frac{\frac{1}{x^{2}}-\frac{1}{4}}{x-2} \\
=\frac{4 C D=4 x^{2}}{4 x^{2} \cdot \frac{1}{x^{2}}-4 x^{2} \cdot \frac{1}{4}} \frac{4 x^{2}(x-2)}{4-x^{2}} \\
=\frac{(2-x)(2+x)}{4 x^{2}(x-2)}=\frac{-(2+x)}{4 x^{2}-B^{2}} \\
\\
\\
\\
=-\frac{1 x-2)}{b-a}=-1
\end{array}
\end{aligned}
$$

